Against Self-Defeating Climate Policy

Michael Buschbacher
buschbacher@boydengrayassociates.com

Follow this and additional works at: https://ecollections.law.fiu.edu/lawreview

Part of the Administrative Law Commons, Energy and Utilities Law Commons, and the Environmental Law Commons

Online ISSN: 2643-7759

Recommended Citation
Michael Buschbacher, Against Self-Defeating Climate Policy, 18 FIU L. Rev. 313 (2024).
DOI: https://dx.doi.org/10.25148/lawrev.18.2.7

This Article is brought to you for free and open access by eCollections. It has been accepted for inclusion in FIU Law Review by an authorized editor of eCollections. For more information, please contact lisdavis@fiu.edu.
AGAINST SELF-DEFEATING CLIMATE POLICY

Michael Buschbacher*

I. INTRODUCTION ... 313

II. EXAMPLE 1: THE ELECTRIC GRID ... 314
 A. Poorly Designed Decarbonization Is Destroying Grid Reliability .. 314
 B. A Better Approach: Get Rid of RTOs and ISOs and Eliminate Irrational Barriers to Nuclear 318

III. EXAMPLE 2: ELECTRIFICATION OF THE VEHICLE FLEET 319
 A. Electric Vehicles Will Not Eliminate Transportation Emission .. 319
 B. A Better Approach: Tech-Neutral Standards and Removing Regulatory Barriers 321

IV. EXAMPLE 3: DOMESTIC ENVIRONMENTAL STANDARDS 322
 A. Excessive Focus on Domestic Emissions Leads to Regulatory Arbitrage .. 322
 B. A Better Approach: Smart De-Regulation, Permitting Reform, and Industrial Policy to Re-Shore Manufacturing 323

V. CONCLUSION ... 324

I. INTRODUCTION

The title of this panel was originally “Getting to Net Zero Energy: Obstacles and Opportunities.” Now it is “Sustainable Energy.” That change may be purely stylistic, but I will infer a deeper meaning and, indeed, a change of framing that I think those working on climate and energy policy would do well to adopt.

For one thing—if by “net zero” one means reaching the Paris Agreement’s oft cited net-zero-by-2050 goal†—then the obstacles are

* Partner, Boyden Gray PLLC; formerly, Counsel to the Assistant Attorney General for the Environment and Natural Resources Division of the U.S. Department of Justice. I wish to thank Mario Loyola, Taylor Myers, and the late C. Boyden Gray. These remarks are offered solely in my personal capacity and not on behalf of any client.
† See generally Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, 3156 U.N.T.S. 1-54113; see also For a Livable Climate: Net-zero Commitments Must Be Backed by Credible Action, UNITED NATIONS, https://www.un.org/en/climatechange/net-zero-coalition (last visited Nov. 7, 2023) (“To keep global warming to no more than 1.5°C—as called for in the Paris Agreement . . . —emissions need to be reduced by 45% by 2030 and reach net zero by 2050.”).
daunting indeed. Perhaps they are not insurmountable, but they are certainly difficult to overstate.\(^2\) The second reason I think it’s wise to move away from the framing of “net-zero by 2050” is that I suspect that Professor Nordhaus and others are right that the Paris agreement is not an ideal solution from a cost-benefit perspective.\(^3\)

Heresy, I know. Professor Loyola, however, tells me that this is “a safe space,” for which I am grateful. Such spaces are rare, though, which brings me to the thesis I will advance here: that a narrow Overton window on climate policy is not just bad for trustworthy science and sound governance, but is also self-defeating to climate activists’ own ends.

In what follows, I will give three examples where climate idealism is likely to backfire, as well as three corresponding opportunities that I submit we should pursue instead. I conclude with some reflections on why this problem has arisen.

II. EXAMPLE 1: THE ELECTRIC GRID\(^4\)

A. Poorly Designed Decarbonization Is Destroying Grid Reliability

Wind and solar have penetrated into the wholesale energy market in large part because of climate policy: specifically, the enormous incentives

\(^2\) To name just a few: (1) the largest emitters are increasing emissions faster than everyone else is cutting them, see Jin Wu & Karoline Kan, The Chinese Companies Polluting the World More Than Entire Nations, BLOOMBERG NEWS (Oct. 24, 2021), https://www.bloomberg.com/graphics/2021-china-climate-change-biggest-carbon-polluters/; (2) low-carbon nuclear plants are closing faster than they are opening, and nuclear energy is in desperate need of permitting reform, see Michael Buschbacher & Taylor Myers, FERC Gaslights America, AM. CONSERVATIVE (Sept. 6, 2022, 12:00 PM), https://www.theamericanconservative.com/ferc-gaslights-america/; (3) wind and solar projects face uphill battles with the sourcing of materials, siting of new plants, construction of new transmission, and integration into the grid, see C. Boyden Gray, Climate Realism and a Positive Vision for American Energy, 21 GEO. J.L. & PUB. POL’Y 149, 168–70 (2023); and (4) claims around renewable energy credits and carbon offsets are riddled with fraud, see, e.g., Shane Shifflett, Companies Are Buying Large Numbers of Carbon Offsets That Don’t Cut Emissions, WALL ST. J. (Sept. 8, 2022, 11:34 AM), https://www.wsj.com/articles/renewables-carbon-credits-do-not-cut-emissions-united-nations-vera-gold-standard-11662644900.

\(^4\) Portions of this section are drawn from Buschbacher & Myers, supra note 2.
and subsidies they receive from state and federal authorities.\(^5\) Wind and solar have a number of advantages.\(^6\) But there are some disadvantages as well. In particular, (1) wind and solar generation are simply less consistent and less reliable than thermal plants that run on coal or nuclear; and (2) the best locations for wind and solar generation are usually far away from where the electricity is needed, meaning many miles of high voltage transmission must be built before new wind or solar can be connected. Thus, as you add more renewables into the mix, ensuring reliability gets more challenging, especially since the same issues that lead to electricity demand spikes—extreme cold, extreme heat, storms—also tend to disable wind and solar when you need them most. Adding more renewables without proper infrastructure leads to what Meredith Angwin calls the “fatal trifecta”: overreliance on weather-dependent solar and wind, just-in-time natural-gas backstops that are not super reliable, and overreliance on imports of electricity from neighboring states.\(^7\)

This is a serious issue: Hundreds died in Winter Storm Uri in Texas in 2021, and damages from the storm cost about $300 billion.\(^8\) And—despite efforts to improve grid reliability—the North American Electric Reliability Corporation has estimated that two-thirds of the United States faces heightened risks of power outages.\(^9\) If a similar crisis occurs in the Northeast, thousands of people are likely to freeze to death.\(^10\)

This is becoming increasingly likely as the mix of generation sources continues to transition to renewables—shrinking reserve margins—without the enormous build-out of transmission capacity necessary to make it

\(^6\) For instance, wind and solar have significantly fewer carbon emissions per MWh generated than both coal and natural gas. Solar and wind also have excellent potential for use in small-scale distributed generation, fostering reduced transmission and distribution losses, improved grid stability and security, and reduced environmental impact.

\(^7\) Meredith Angwin, Nuclear, the Auctions and the Grid, WORLD NUCLEAR NEWS (Dec. 9, 2021), https://www.world-nuclear-news.org/Articles/Viewpoint-Nuclear,-the-auctions-and-the-grid.

\(^8\) TEX. SECTION, AM. SOC’Y OF CIV. ENGR’RS, RELIABILITY AND RESILIENCE IN THE BALANCE 4 (2022).

reliable. But—even with the funding from the so-called Inflation Reduction Act—the transmission revolution cannot be completed on the Paris timeline, nor am I convinced that this is a cost-effective solution.

Why then are renewables still being added to the grid, further jeopardizing reliability? I think there are two reasons. The first is the heavy subsidies for renewables. The second is the way that these subsidies interact with the market for wholesale electricity. Historically, we ensured reliability through the direct regulation of traditional vertically integrated utilities. But more recently, we’ve seen the proliferation of Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs), which coordinate transmission, primarily through holding auctions to determine what power plants can most cheaply meet demand. These aren’t really markets in any meaningful sense, though. And it’s become increasingly clear that this system does not have adequate tools for disciplining those who fail to deliver.

Some, like the now-former FERC Chairman Richard Glick, have blamed climate change for these failures, opining that a “main threat” to grid reliability is “extreme weather associated with climate change.” The solution offered, of course, is further decarbonization to reduce the occurrence of extreme weather events. That is not a serious proposal.

11 See N. AM. ELEC. RELIABILITY CORP., 2022 LONG-TERM RELIABILITY ASSESSMENT 6–7, 22, 44 (2022), https://www.nerc.com/PA/RAPA/ra/Reliability%20Assessments%20DL/NERC_LTRA_2022.pdf (projecting at least elevated risk of shortfall across most of the United States with the top contributor to the shortfall being the “integrated[in of] inverter-based resources (IBR), which include most solar and wind generation,” that there is “insufficient transmission for large power transfers,” and that transmission development is a “necessary part of maintaining reliability as the resource mix evolves”).

15 See Buschbacher & Myers, supra note 2.
Against Self-Defeating Climate Policy

The two more serious solutions are: first, as suggested above, an enormous (and extremely costly) buildout of transmission infrastructure; and second, the building of huge battery banks. Both solutions are flawed. Building out transmission is not only very expensive, but permitting barriers make the proposed schedule infeasible. There are similar problems with batteries, with the added difficulty that battery tech simply isn’t advanced enough for this to scale in the timelines we are discussing.

Consider these two concrete examples. If you look in the Midwest there is a huge backlog of wind and solar that have been built but never connected to the grid. And ISO New England recently estimated that its system’s reserve-generation capacity will need to increase from the current 15% to 300% by 2040 as more solar and wind are added.

The sad irony is that this approach won’t even help to stop climate change. People simply won’t tolerate being left to freeze to death. We’re seeing this in countries like Germany, which is switching back to brown coal, despite billions invested in wind and solar.

18 See id.; Emmet Penney, The Rise and Fall of the American Electrical Grid, AM. AFFS., Fall 2022, at 56, 79 (“[T]hose who deal in quick fixes, like delusional transmission buildouts, hypothetical black-box modeling, or various other wonkish tabletop role-playing games, ceased being honest brokers long ago.”).

20 See MISO’s Generator Interconnection Queue Cycle Set New Record, MISO (Sept. 27, 2022), https://www.misoenergy.org/meet-miso/media-center/2022/misos-generator-interconnection-queue-cycle-set-new-record/?epslanguage=en (“In July, MISO’s board approved 18 transmission projects . . . The MISO queue currently consists of 769 projects totaling 118 GW—97% . . . of which is renewable or storage.”).

B. A Better Approach: Get Rid of RTOs and ISOs and Eliminate Irrational Barriers to Nuclear

The regulatory problems with grid management that have led us here are extremely complex—I don’t have time to cover them. Simply put: the “market” system of RTOs and ISOs is fundamentally flawed. They diffuse responsibility, don’t reduce costs, and don’t meaningfully reduce emissions.23 I think we shouldn’t bother with reforms; RTOs and ISOs should be scrapped as a failed experiment.24 We should go back to vertically integrated utilities or even the Tennessee Valley Authority model. Heresy again—this time for conservatives and libertarians.

We also need permitting reform that actually changes things. You must end the ability of just anyone to go to court.25 Permitting litigation risk has a significant in terrorem effect, even on matters that don’t end up going to court. For environmental activists, broad rights to sue are something of a sacred cow. I think that’s a mistake. It is one thing to be allowed to sue if you have a property right that is going to be damaged in some concrete way by a project. It is another thing if you’re talking about “aesthetic injury” or fears about far off consequences from climate change. The right way to address these injuries is the political process.

Permitting reform is a subject that requires congressional action to fully effectuate. But much of this can be fixed by the courts who made the mess in the first place when they misinterpreted the judicial review provisions of the Administrative Procedure Act (APA). There’s an excellent article by Professor Caleb Nelson that persuasively explains how the current test for “statutory standing”—a test that asks only whether the plaintiff “is arguably within the zone of interests to be protected or regulated by the statute”—arises from a misunderstanding of Association of Data Processing Service Organizations v. Camp.26 According to Nelson, Data Processing’s

23 See, e.g., Penney, supra note 18, at 79 (“Deregulation has thus ironically succeeded at entrenching unaccountability. The grid is now more fragile, more expensive, and more opaque.”).

24 This would no doubt be difficult. As Emmett Penney points out, “[v]arious universities, utilities, NGOs, major financial institutions, politicians, and industry interests have too much at stake to turn back now,” and “FERC wants to create more and bigger electricity markets.” Id. (footnote omitted). RTOs and ISOs, however, may be vulnerable to legal challenges, especially if the Supreme Court continues to curtail the wiggle room of federal agencies to reimagine old statutes in new ways. See, e.g., West Virginia v. EPA, 142 S. Ct. 2587, 2609 (2022) (“[We] ‘typically greet’ assertions of ‘extravagant statutory power over the national economy’ with ‘skepticism.’”) (quoting Util. Air Regul. Grp. v. EPA, 573 U.S. 302, 324 (2014)).

“standing” test was meant to be a loose preliminary screen applicable only at the pleadings phase, rather than a statement of law about who can obtain judicial review under the APA.27

Another big part of this has to be to loosen the regulatory stranglehold on nuclear power generation.28 I wasn’t allowed to watch the Simpsons when I was a kid—and presumably my mother’s injunction still stands—but I unironically join in with Homer Simpson’s prayer, thanking God “for nuclear power . . . the cleanest, safest energy source . . . except for solar, which is a pipe dream.”29

III. EXAMPLE 2: ELECTRIFICATION OF THE VEHICLE FLEET

A. Electric Vehicles Will Not Eliminate Transportation Emissions

The Biden administration has made electrification of the vehicle fleet one of its key policy objectives. To quote the President’s executive order, the “goal [is] that 50% of all new passenger cars and light trucks sold in 2030 be zero-emission vehicles.”30 New proposed rules from EPA go even further and would require almost 70% of all new light-duty vehicles to be electric by 2032.31

There are at least three policy problems with forced electrification: (1) Electric cars are not a cost-effective means of reducing carbon dioxide emissions,32 (2) they are not practical for many applications,33 and (3) they

27 Id. at 763.
28 This could be done, for example, by repealing moratoria on new nuclear plants, abandoning the as low as reasonably achievable (“ALARA”) standard, accelerating timelines for review and permitting, and streamlining the regulatory process associated with the licensing of advanced nuclear reactors. See Emmet Penney, Who Killed Nuclear Energy and How to Revive It, AM. AFFS., Summer 2022, at 82, https://americanaffairsjournal.org/2022/05/who-killed-nuclear-energy-and-how-to-revive-it/; Byron Donalds & Christopher Barnard, It’s Time for America to Unleash Next-Generation Nuclear Energy, REALCLEAR ENERGY (Mar. 22, 2023), https://www.realclearenergy.org/articles/2023/03/22/its_time_for_america_to_unleash_next-generation_nuclear_energy_888871.html.
29 The Simpsons: Bart vs. Thanksgiving (Fox television broadcast Nov. 22, 1990).
33 In particular, long-haul freight and commercial light- and medium-duty trucks, which require more energy than available batteries could provide or operate far from the fast-charging network that serves lighter vehicles. See Michael A. Tamor & Ellen B. Stechel. Electrification of Transportation Means a Lot More Than a Lot More Electric Vehicles, 25 iSCIENCE, no. 104376, May 2022, at 1,
are very expensive. How expensive? Last I looked, the average electric vehicle cost is around $61K; the average vehicle cost (including both EVs and conventional vehicles) is around $49K; and the average subcompact is about $26K.34 And this is with the huge subsidies (and regulatory cross-subsidies) for electric cars incorporated into the price. I suspect pricing will only get worse, as the critical minerals (which are controlled by China) needed to make electric cars are already in short supply.35

Obtaining all the minerals electric cars need raises other problems too. An electric car’s battery weighs about 900 pounds and sources materials from countries with horrible environmental and human rights records.36

If you think the car market is bad now, just wait. It is not an accident that the Biden administration’s goals are expressed as percentages, not actual numbers. A percentage is determined by both the numerator and the denominator. If the numerator—total sales of electric cars—doesn’t grow, then the denominator will have to shrink, which you accomplish by raising prices. Fewer cars total is, indeed, the goal of many climate activists.37

To keep profits up, automakers will focus on areas where they can make money even as the total number of cars sold goes down, areas where the regulatory cost has smallest marginal impact—expensive trucks, SUVs, and luxury vehicles. Further complicating this problem is the fact that large cars

37 E.g., Marcela Guerrero Casas, This Is What Happens When Cities Ban Cars from the Roads, WORLD ECON. F. (Oct. 28, 2019), https://www.weforum.org/agenda/2019/10/car-free-streets-benefits-around-the-world/ (“If we are to meet the UN’s Sustainable Development Goals (SDG) on sustainable cities and communities, a more revolutionary (albeit more low-tech) picture will unfold, in which people are moving freely and swiftly—but not by car.”); CAL. AIR RES. BD., 2022 SCOPING PLAN FOR ACHIEVING CARBON NEUTRALITY 194 (2022) (setting a goal to reduce driving per capita by 25% below 2019 levels by 2030 and by 30% below 2019 levels by 2045); Jigar Shah (@JigarShahDC), X (Sept. 19, 2023), https://twitter.com/JigarShahDC/status/1703980264056107300 (“Replacing all of the vehicles in the world with EVs is not sustainable. We need to invest in micro mobility, new ownership models, better urban planning models and other improvements.”).
and trucks are allowed to emit more pollution—they get the equivalent of a
golf handicap. All of this constricts the supply of affordable cars.

As this continues, the result will be the Cuba-fication of the affordable
car market. This hurts the poor and hurts the economy, but it doesn’t improve
net emissions very much at all.

B. A Better Approach: Tech-Neutral Standards and
Removing Regulatory Barriers

The golf-handicap for big vehicles could be revisited to actually
incentivize greater fuel efficiency. We should also consider moving to tech-
neutral standards, rather than tech-forcing standards.

Related to this, we could improve fuel quality by increasing minimum
octane ratings from 91 RON to be more in line with what we see in Europe—
95/98 RON. Octane is the measure of how much a fuel can be compressed
before it knocks—i.e., combusts prematurely due to the heat from
pressurization rather than from the spark plug. A fuel with a higher-octane
rating can sustain greater compression and can be used in more efficient
engines. I don’t have time to get into it in detail here, but I
think this is the
value of ethanol. It is the cheapest source of octane, and you could get
significant increases in efficiency—5 to 10%—at very low cost by
eliminating barriers to higher blends of ethanol. In addition, corn ethanol is
also significantly less carbon intensive than gasoline and produces fewer
particulate emissions. Even with the Biden Administration’s ambitious
electrification goals, we will have millions of liquid-fueled vehicles on the
road for the next thirty years at least, and fuel changes could make a
difference in all of them.

38. Kate S. Whitefoot & Steven J. Skerlos, Design Incentives to Increase Vehicle Size Created from
the U.S. Footprint-Based Fuel Economy Standards, 41 ENERGY POL’Y 402 (2012),
https://www.meche.engineering.cmu.edu/_files/images/research-groups/whitefoot-group/WS-
FootprintFuelEconomy-EP.pdf.

39. Thomas G. Leone et al., The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol
Content on Spark-Ignition Engine Efficiency, 49 ENV’T SCI. & TECH. 10778, 10780 (2015),
https://pubs.acs.org/doi/full/10.1021/acs.est.5b01420; see also José Rodríguez-Fernández et al.,
Improving Fuel Economy and Engine Performance Through Gasoline Fuel Octane Rating, 13 ENERGIES,

40. See Leone et al., supra note 39, at 10786.

41. Id.
IV. EXAMPLE 3: DOMESTIC ENVIRONMENTAL STANDARDS

A. Excessive Focus on Domestic Emissions Leads to Regulatory Arbitrage

We have some of the most stringent environmental regulations here in the United States, with aggressive standards for air and water pollution and detailed environmental review for new projects. These regulations add costs to making and sourcing things domestically: steel, plastics, mining for minerals, making stuff. I like having a clean environment, and I think we should continue to pay for it. But the way we approach these standards puts far too much focus on what happens in the United States and ignores the emissions from foreign suppliers of materials. This is particularly ineffective when it comes to our attempts to combat global climate change, where emissions from anywhere contribute to changes everywhere. Our myopic focus on domestic greenhouse gas emissions leads to regulatory arbitrage or “carbon leakage”—where piecemeal regulation creates a game of emissions-reduction whack-a-mole: what gets knocked down in one place pops up somewhere else.42

When faced with high price tags for domestically produced products, and lower costs abroad, many companies choose to manufacture internationally and import their products. And by decreasing domestic economies-of-scale, this further drives up the price for locally manufactured goods.

Take steel manufacturing, for example, which accounts for roughly 7.5% of global greenhouse-gas emissions.43 While the U.S. can make plenty of steel, it is currently the largest steel importer in the world, in part because our stringent environmental standards make domestic production comparatively costly. About half of the world’s steel is made in China. But

42 This phenomenon has been commonly referred to as the “pollution haven hypothesis.” The most recent research suggests that firms tend to offshore only the most polluting steps of their production process, in order to preserve their potential advantages at home. “Although these firms may decide not to relocate entirely when domestic environmental regulations become stricter, offshoring specific subsets of their production process abroad allows them to reduce the pollution level of their domestic operation.” Aurélien Saussay & Natalia Zagravu-Soilita, International Production Chains and the Pollution Offshoring Hypothesis: An Empirical Investigation, 73 RES. & ENERGY ECON., no. 101357, Feb. 2023, at 1, 2. https://www.sciencedirect.com/science/article/pii/S092876552300012X. The latter fact has led Saussay and Zagravu-Soilita to suggest renaming the phenomenon the “Pollution Offshoring Hypothesis.” Id.; see also Ke Zhang & Xingwei Wang, Pollution Haven Hypothesis of Global CO$_2$, SO$_2$, NO$_x$—Evidence from 43 Economies and 56 Sectors, 18 INT’L J. ENV’T RSCH. & PUB. HEALTH, no. 6552, June 2021, at 1, https://pubmed.ncbi.nlm.nih.gov/34207027/.

carbon emissions from Chinese steel are two times greater than they are for making the same steel in America.44

Reshoring steel production is low hanging fruit and could reduce the costs of environmentally friendly steel while reducing emissions. But such proposals don’t go far with many climate policymakers, so instead we continue to allow high emissions steel from China to dominate the global marketplace.

B. A Better Approach: Smart De-Regulation, Permitting Reform, and Industrial Policy to Re-Shore Manufacturing

Americans will pay more for made-in-America products, just not twice as much. And reshoring labor has a lot of support on the right—former President Trump gained a lot of popularity on this. There are three ways I think we should seek to promote reshoring: (1) smarter regulation (and deregulation); (2) permitting reform; and (3) stronger national industrial policy.

Regulatory Policy. Conservatives are sometimes too hostile towards pollution control legislation and regulation. As Roger Scruton noted, “The truth in environmentalism is . . . the truth that rational beings externalize their costs when they lack the motive to act otherwise” and that it is thus impossible to “rectify externalities merely by looking at our own particular patch.”45 But the important goods that environmental regulation has successfully protected can obscure the immense amount of stupidity that goes along under the banner of pollution control regulation.46 With regulation of greenhouse gas emissions, the focus should always be on the global effect. I do not have a proposal for the optimal level of environmental deregulation, but the question deserves careful attention. In my view, a lot should be cut—particularly with respect to air quality regulation—to get to a better balance of costs and benefits.

45 ROGER SCRUTON, HOW TO BE A CONSERVATIVE 98 (2014).
46 A full list would be more than this Article unto itself. One of my favorite examples is the Clean Air Act’s New Source Review program, which exempts, among others, existing coal power plants from its stringent requirements so long as the plants are not substantially “modified.” As a result, many of the dirtiest powerplants in the country have continued to operate as they did in the 1970s to avoid the costly requirements imposed by the New Source Review program.
Permitting Reform. Reshoring manufacturing at scale is infeasible without overhauling our permitting regime to eliminate its enormous anti-development bias.\(^{47}\) For natural gas pipelines, high-voltage transmission lines, and countless other projects, the red-tape associated with the National Environmental Policy Act (NEPA) and other permitting veto gates adds years to initial project permitting and creates legal hooks for environmental groups and NIMBYists to launch lawsuits, adding further risks and costs. Shortening these timelines and reducing these costs is good for industry and manufacturing generally, and is critical to a wind, solar, and electric vehicle push, which will require a dramatic increase in domestic mining of critical minerals.\(^{48}\)

Industrial Policy. If we penalize arbitrage, more manufacturing will shift back into the United States, creating domestic jobs, improving quality, and reducing emissions.\(^{49}\) There are lots of different ways we could address this: border adjustment taxes, prohibitions on sourcing from countries with regulations below a certain laxity, or a big industrial policy push like the CHIPS Act. I am not picking a winner here or saying how aggressive we should be. But there is real opportunity.

V. CONCLUSION

So, why? Why do such self-defeating climate policies predominate?

I think it’s because something more than policy is going on. It is a commonplace to observe that much climate policy is discussed—not in the register of technocratic policy debate, or even as “politics,” in the Aristotelian sense as a debate about “the good”—but as almost a religious matter. This is why I can make half jokes about uttering “heresy”; because there is a corresponding “orthodoxy.” We all know the tenets of this creed: there exists a “climate crisis” caused by the sins and greed of mankind; repairing this rift requires belief, repentance, and missionary zeal; and if we fail, we consign the earth to a scorching apocalypse. The President’s recent comments are emblematic. “If we don’t keep the temperature from going above 1.5 degrees Celsius raised” the coming “generation is damned. I mean, that’s not

\(^{47}\) See Gray & Buschbacher, supra note 25.

\(^{49}\) For more general thoughts on reshoring, see David P. Goldman, Foreword: The Reshoring Imperative, AM. COMPASS (June 8, 2020), https://americancompass.org/foreword-moving-the-chains/.
hyperbole, really, truly in trouble.” To avoid this perdition, we must engage in that most religious impulse of all: we must sacrifice. As one friend, an energy bureaucrat, said to me, that our approach to climate policy may be self-defeating only strengthens the imperative “to do something.”

Fiat justitia ruat caelum is a noble motto. And I do not deny the spiritual significance of statecraft. But I do reject the obvious falsehoods and what seems to me to be a confusion of the temporal and the eternal; the physical and the spiritual.

Philosopher Eric Voegelin called this “theoretical fallacy” “gnosticism,” after the ancient Christian heresy founded on claims of *gnosis* (lit. “knowledge”): the “purported direct, immediate apprehension or vision of truth without the need for critical reflection; the special gift of a spiritual and cognitive elite.” As Voegelin explained:

> In the Gnostic dream world . . . nonrecognition of reality is the first principle. As a consequence, types of action which in the real world would be considered as morally insane because of the real effects which they have will be considered moral in the dream world because they intended an entirely different effect.52

Then, to justify itself, the “gap between intended and real effect will be imputed not to the Gnostic immorality of ignoring the structure of reality but to the immorality of some other person or society that does not behave as it should behave according to the dream conception of cause and effect.”53 This fits much “climate discourse” to a T, alas.

* * *

My closing “sustainable energy opportunity” is that, thankfully, I don’t think most Americans are climate gnostics. As the consequences of self-defeating climate policy start to come home, my hope is that those who have led us into this mess will realize their errors or, barring that, that voters will select new leaders who will chart a saner course.

53 *Id.*